
Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 1

Unit-1

1. Introduction to Object Oriented Programming

Object-oriented programming is one of the most interesting and useful

inventions in the software development. It has strong roots in programming

paradigms and practices. It addresses the problems commonly known as

software crisis. The term software crisis describes the software failure in

terms of the following:

 Exceeding the software budget

 Software not meeting the user requirements

 Bugs in the software

OOP is programming which deals with building the programs and applications

using the objects. These objects are similar to the real-world objects. Every

object has an identity, attributes and behavior. The features of OOP such as

abstraction, encapsulation, inheritance and polymorphism are closely

related to real-world objects.

2. Procedural Programming Language Vs Object Oriented
Programming language.

There are two main programming paradigms: procedural programming and
object-oriented.

2.1 Procedural programming language

In procedural programming languages such as C, PASCAL and FOTRAN, a
program is a list of instructions. All these instructions are executed in
sequence. As the program size increases, the complexity also increases. Hence,

it is difficult to understand and maintain. There may be number of variables in
the program. The change of a variable somewhere in the program may produce
side affect.
 There are two main problems: 1) the functions have access to the global
data, hence there is no data security and 2) functions provide poor mapping of

real-world objects. To address and manage this complexity, second
programming paradigm was designed.

2.2 Object-oriented programming language

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 2

In real-world we deal with objects such as car, plane, and bike. Each object has
its own Identity (name), attributes (data) and behavior (functions). The

attributes define data for an object. For example the attributes of student
object are name, roll number, and branch. The behavior defines the functions

that operate on the data. There can be one or more functions.

Difference between procedural and object-oriented programming languages

Sl.No Procedural Programming
language

Object-oriented programming
language

1
This follows a top-down approach.

OOP takes a bottom-up approach
in designing a program.

2 Program is divided into small
chunks based on the functions.

Program is divided into objects
depending on the problem.

3 Separates the data from functions
that operate data.

Encapsulates data and methods in
a class

4 Debugging is difficult Debugging is easier

5 Each function contains different

data.
Each object controls its own data.

6 Follows a systematic approach to

solve the problem.

Focuses on security of the data

irrespective of the algorithm.

7 Different parts of a program are

interconnected via parameter
passing.

The functions of the objects are
linked via message passing.

8 No easy way for data hiding. Data hiding is possible in OOP.

9 No such concept of inheritance in
procedural programming.

Inheritance is allowed in OOP.

10 Operator overloading is not
allowed.

Operator overloading is allowed.

11 C,Pascal, and Fortran. C++, Java, and Python

3. The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you

implement the object-oriented model. They are encapsulation, inheritance, and
polymorphism.

Encapsulation

Encapsulation is the mechanism that binds data and methods together into a
single unit. It is also known as data hiding. It prevents outside code from

accessing the data. One way to think about encapsulation is as a protective
wrapper that prevents the code and data from being arbitrarily accessed by

other code defined outside the wrapper. Access to the code and data inside the
wrapper is tightly controlled through a well-defined interface. In Java, the basis

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 3

of encapsulation is the class. A class is defined as blue print or prototype or
template of an object. The objects are defined as instances of a class. Thus, a

class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that
constitute that class. Collectively, these elements are called members of the
class. Specifically, the data defined by the class are referred to as member
variables or instance variables. The code that operates on that data is

referred to as member methods or just methods. The members can be public

or private. When a member is made public any code outside the class can

access them. If the members are declared, then only the members of that class
can access its members.

Inheritance

Inheritance is the process by which one class acquires the properties of

another class. The class that acquires properties is called sub class. The class
from which properties are acquired is called super class. The relationship

between these two classes is called parent-child relationship. When a class

inherits another class, it has all the public properties of base class and it adds
its own new properties. The main objective of the Inheritance is code

reusability.

For example, a vehicle can be car, bike and plane. All vehicles acquire
properties from a base class vehicle. All vehicles acquire common properties

such as engine and speedometer from the vehicle super class.

Note:- The sub class is also known as child class or derived class. The super class is also known

as parent class or base class.

Polymorphism

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 4

Polymorphism simply means “many forms”. It can be defined as same thing

being used in many different forms. There are two types of polymorphisms:

compile-time and run-time polymorphism. In the case of compile-time
polymorphism, the compiler will decide which method is going to be executed.
The binding is done at compile-time, hence it is called static binding or early
binding.

In case of run-time polymorphism, which method has to be executed is
determined at run-time, hence it is called dynamic binding or late binding.

Method overloading is the example for compile-time polymorphism. Method
overriding is the example for run-time polymorphism.

4. Applications of OOP

The OOP is used in different applications such as Real-time systems, Neural

networks, expert systems, database management systems, and artificial

intelligence. There are mainly 6 types of applications that can be created using

java programming as listed in the Figure 1.

Figure 1 Applications of OOP

1) Standalone Applications or Desktop GUI Applications

Java provides GUI development through various means like Abstract

Windowing Toolkit (AWT), Swing and JavaFX. While AWT contains a number of

pre-constructed components such as menu, button, list, and numerous third-

party components, Swing, a GUI widget toolkit, additionally provides certain

advanced components like trees, tables, scroll panes, tabbed panel and lists.

2) Web Application

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 5

Java provides support for web applications through Servlets,

Struts or JSPs. The easy programming and higher security offered by the

programming language has allowed a large number of government applications

for health, social security, education and insurance to be based on Java.

3. Embedded Systems

Embedded systems, ranging from tiny chips to specialized computers, are

components of larger electromechanical systems performing dedicated tasks.
Several devices, such as SIM cards, blue-ray disk players, utility meters and

televisions, use embedded Java technologies. According to Oracle, 100% of
Blue-ray Disc Players and 125 million TV devices employ Java.

4) Enterprise Application

An application that is distributed in nature such as banking applications etc;,

It has the advantage of high level security, load balancing and clustering. In

java, EJB is used for creating enterprise applications.

5) Mobile Application

Java Platform, Micro Edition (Java ME or J2ME) is a cross-platform framework

to build applications that run across all Java supported devices, including

feature phones and smart phones.

6) Scientific Applications

Java is the choice of many software developers for writing applications
involving scientific calculations and mathematical operations. These programs
are generally considered to be fast and secure, have a higher degree of

portability and low maintenance. Applications like MATLAB use Java both for
interacting user interface and as part of the core system.

5. History of JAVA
1. Brief history of Java

2. Java Version History

Java history is interesting to know. The history of java starts from Green Team. Java team

members (also known as Green Team), initiated a revolutionary task to develop a language for

digital devices such as set-top boxes, televisions etc. For the green team members, it was an

http://www.javatpoint.com/history-of-java
http://www.javatpoint.com/history-of-java#version

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 6

advance concept at that time. But, it was suited for internet programming. Later, Java technology

as incorporated by Netscape. Currently, Java is used in internet programming, mobile devices,

games, e-business solutions etc. There are given the major points that describes the history of

java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in

June 1991. The small team of sun engineers called Green Team.

2) Originally designed for small, embedded systems in electronic appliances like set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling and file extension was .gt.

4) After that, it was called Oak and was developed as a part of the Green project.

Why Oak name for java language?

5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like

U.S.A., France, Germany, Romania etc. During 1991 to 1995 many people around the world

contributed to the growth of the Oak, by adding the new features. Bill Joy, Arthur van Hoff,

Jonathan Payne, Frank Yellin, and Tim Lindholm were key contributors to the original

prototype.

6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak

Technologies.

Why Java name for java language?

7) Why they chose java name for java language? The team gathered to choose a new name.

The suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA" etc. They wanted

something that reflected the essence of the technology: revolutionary, dynamic, lively, cool,

unique, and easy to spell and fun to say. According to James Gosling "Java was one of the top

choices along with Silk". Since java was so unique, most of the team members preferred java.

8) Java is an island of Indonesia where first coffee was produced (called java coffee).

9) Notice that Java is just a name not an acronym.

10) Originally developed by James Gosling at Sun Microsystems (which is now a subsidiary of

Oracle Corporation) and released in 1995.

11) In 1995, Time magazine called Java one of the Ten Best Products of 1995.

12) JDK 1.0 released in(January 23, 1996).

Java Version History

There are many java versions that has been released. Current stable release of Java is Java SE 8.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 7

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep, 2004)

8. Java SE 6 (11th Dec, 2006)

9. Java SE 7 (28th July, 2011)

10. Java SE 8 (18th March, 2014)

6. Features of Java (Buzzwords of Java)

There is given many features of java. They are also known as java buzzwords. The Java Features

given below are simple and easy to understand.

o Simple

o Secure

o Portable

o Object-oriented

o Robust

o Multithreaded

o Architecture-neutral

o Interpreted

o High performance

o Distributed

o Dynamic

 Simple

Java was designed to be easy for the professional programmer to learn and use effectively.

According to Sun, Java language is simple because: syntax is based on C++ (so easier for

programmers to learn it after C++). removed many confusing and/or rarely-used features e.g.,

explicit pointers, operator overloading etc. No need to remove unreferenced objects because

there is Automatic Garbage Collection in java.

Secure

Once the byte code generated, the code can be transmitted to other computer in the world with

knowing the internal details of the source code.

Portable

The byte code can be easily carried from one machine to other machine.

Object Oriented

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 8

Everything in Java is an Object. The object model in Java is simple and easy to extend, while

primitive types, such as integers, are kept as high-performance non-objects.

Robust

The multi-plat-formed environment of the Web places extraordinary demands on a program,

because the program must execute reliably in a variety of systems. Thus, the ability to create

robust programs was given a high priority in the design of Java. Java also frees from having

worry about many errors. Java is Robust in terms of memory management and mishandled

exceptions. Java provides automatic memory management and also provides well defined

exception handling mechanism.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you to

write programs that do many things simultaneously.

Architecture-neutral

The Java designers made several hard decisions in the Java language and the Java Virtual

Machine in an attempt to alter this situation. Their goal was “write once; run anywhere, any time,

forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance

Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java byte code. This code can be executed on any system that implements

the Java Virtual Machine. Most previous attempts at cross-platform solutions have done so at the

expense of performance. As explained earlier, the Java byte code was carefully designed so that

it would be easy to translate directly into native machine code for very high performance by

using a just-in-time compiler.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP

protocols. In fact, accessing a resource using a URL is not much different from accessing a file.

Java also supports Remote Method Invocation (RMI). This feature enables a program to invoke

methods across a network.

Dynamic

Java programs carry with them substantial amounts of run-time

type information that is used to verify and resolve accesses to

objects at run time. This makes it possible to dynamically link

code in a safe and expedient manner.

7. Java Virtual Machine

Figure 2 JVM

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 9

The key that allows Java to solve both the security and the portability problems is the byte

code. The output of Java Compiler is not directly executable file. Rather, it contains highly

optimized set of instructions. This set of instructions is called, "byte code". This byte code is

designed to be executed by Java Virtual Machine (JVM). The JVM also called the interpreter for

byte code. JVM also helps to solve many problems associated with web-based programs.

Translating a Java program into byte code makes it much easier to run a program in a wide

variety of environments because only the JVM needs to be implemented for each platform. Once

the run-time package exists for a given system, any Java program can run on it. Remember,

although the details of the JVM will differ from platform to platform, all understand the same

Java byte code. Thus, the execution of byte code by the JVM is the easiest way to create truly

portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure. Because

the JVM is in control, it can contain the program and prevent it from generating side effects

outside of the system.

In general, when a program is compiled to an intermediate form and then interpreted by a

virtual machine, it runs slower than it would run if compiled to executable code. However, with

Java, the differential between the two is not so great. Because byte code has been highly

optimized, the use of byte code enables the JVM to execute programs much faster than you

might expect

To give on-the-fly performance, the Sun began to design HotSpot Technology for Compiler,

which is called, Just-In-Time compiler. The JIT, Compiler also produces output immediately

after compilation.

8. Program Structures

Simple Java Program

Example.java

class Example

{

 public static void main(String args[])

 {

 System.out.println("Hello World");

 }

}

Entering the Program

We can use any text editor such as "notepad' or "dos text editor". The source code is typed and is

saved with ".java" as extension. The source code contains one or more class definitions. The

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 10

program name will be same as class name in which main function is written. This in not

compulsory, but by convention this is used. The source file is officially called as compilation

unit. We can even uses our choice of interest name for the program. If we use a different name

than the class name, then compilation is done with program name, and running is done with class

file name. To avoid this confusion and organize the programs well, it is suggested to put the

same name for the program and class name, but not compulsory.

Compiling the Program

To compile the program, first execute the compiler, "javac", specifying the name of the source

file on the command line, as shown bellow:

c:\>javac Example.java

The javac compiler creates the file called "Example.class", that contains the byte code version of

the source code. This byte code is the intermediate representation of the source code that

contains the instructions that the Java Virtual Machine (JVM) will execute. Thus the output of

the javac is not the directly executable code.

 To actually run the program, we must use Java interpreter, called "java". This is

interpreter the "Example.class" file given as input.

When the program is run with java interpreter, the following output is produced:

Hello World

Description of the every line of the program

The first line contains the keyword class and class name, which actually the basic unit for

encapsulation, in which data and methods are declared.

Second line contains "{" which indicates the beginning of the class.

Third line contains the

public static void main(String args[])

where “public” is access specifier, when a member of a class is made public it can be accessed

by the outside code also. The “static” is the keyword which is used to call the main function

without instantiation. The “void” is also a keyword which is used to describe the the return type

of the function. The main function is the beginning of from where execution starts. Java is case-

sensitive. "Main" is different from the "main". In main there is one parameter, String args,

which is used to read the command line arguments.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 11

Fourth line contains the "{", which is the beginning of the main function.

Fifth line contains the statement

 System.out.println("Hello World");

Here "System" is the predefined class, that provides access to the system, and out is the output

stream that is used to connect to the console. The println(), is used to display string passed to it.

This can even display other information to.

Installation of JDK 1.6 (Additional Topic)
Installing the JDK Software

If you do not already have the JDK software installed or if JAVA_HOME is not set, the Java

CAPS installation will not be successful. The following tasks provide the information you need

to install JDK software and set JAVA_HOME on UNIX or Windows systems.

The following list provides the Java CAPS JDK requirements by platform.

Solaris

JDK5: At least release 1.5.0_14

JDK6: At least release 1.6.0_03

IBM AIX

JDK5: The latest 1.5 release supported by IBM AIX

Linux (Red Hat and SUSE)

JDK5: At least release 1.5.0_14

JDK6: At least release 1.6.0_03

Macintosh

JDK5: The latest 1.5 release supported by Apple

Microsoft Windows

JDK5: At least release 1.5.0_14

JDK6: At least release 1.6.0_03

To Install the JDK Software and Set JAVA_HOME on a Windows System

1. Install the JDK software.

a. Go to http://java.sun.com/javase/downloads/index.jsp.

http://java.sun.com/javase/downloads/index.jsp

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 12

Note: java.sun.com now owned by oracle corporation

b. Select the appropriate JDK software and click Download.

The JDK software is installed on your computer, for example, at C:\Program

Files\Java\jdk1.6.0_02. You can move the JDK software to another location if desired.

2. To set JAVA_HOME:

a. Right click My Computer and select Properties.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 13

b. On the Advanced tab, select Environment Variables, and then edit JAVA_HOME to

point to where the JDK software is located, for example, C:\Program

Files\Java\jdk1.6.0_02.

Installation of the 32-bit JDK on Linux Platforms

This procedure installs the Java Development Kit (JDK) for 32-bit Linux, using an archive

binary file (.tar.gz).

These instructions use the following file:

jdk-8uversion-linux-i586.tar.gz

1. Download the file.

Before the file can be downloaded, you must accept the license agreement. The archive

binary can be installed by anyone (not only root users), in any location that you can write to.

However, only the root user can install the JDK into the system location.

2. Change directory to the location where you would like the JDK to be installed, then move

the .tar.gz archive binary to the current directory.

3. Unpack the tarball and install the JDK.

4. % tar zxvf jdk-8uversion-linux-i586.tar.gz

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 14

The Java Development Kit files are installed in a directory called jdk1.8.0_version in the

current directory.

5. Delete the .tar.gz file if you want to save disk space.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the

combination of an identifier, a type, and an optional initializer. In addition, all variables have a

scope, which defines their visibility, and a lifetime.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable

declaration is shown here:

type identifier [= value/literal][, identifier [= value/literal] ...] ;

Here the type is any primitive data types, or class name. The identifier is the name of the

variable. We can initialize the variable by specifying the equal sign and value.

Example

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing
// d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; //the variable x ahs the value 'x'

Dynamic Initialization of the variable

We can also assign a value to the variable dynamically as follow:

int x=12;
int y=13;
float z=Math.sqrt(x+y);

The Scope and Lifetime of Variables

 Java allows, to declare a variable within any block.
 A block begins with opening curly brace and ended with end curly brace.
 Thus, each time we start new block, we create new scope.
 A scope determines what objects are visible to parts of your program. It also

determines the life time of the objects.
 Many programming languages define two scopes: Local and Global
 As a general rule a variable defined within one scope, is not visible to code defined

outside of the scope.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 15

 Scopes can be also nested. The variable defined in outer scope are visible to the inner
scopes, but reverse is not possible.

Example code

void function1()

{//outer block

 int a;

//here a, are visible to the inner scope

int a=10;

if(a==10)

{// inner block

 int b=a*20;

int c=a+30;

}//end of inner block

b=20*2;

// b is not known here, which declared in inner scope

}//end of the outer block

Identifiers

Identifiers are used for class names, method names, and variable names. An identifier may be

any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and

dollar-sign characters. They must not begin with a number, lest they be confused with a numeric

literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some

examples of valid identifiers are:

Rules for Naming Identifier:

1. The first character of an identifier must be a letter, or dollar($) sign.

2. The subsequent characters can be letters, an underscore, dollar sign or digit.

3. White spaces are not allowed within identifiers.

4. Identifiers are case sensitive so VALUE is a different identifier than Value

Average Height A1 Area_Circle

Invalid Identifiers are as follow:

2types Area-circle Not/ok

Naming Convention for Identifiers

 Class or Interface- These begin with a capital letter. The first alphabet of every internal

word is capitalized. Ex: class Myclass;

 Variable or Method –These start with lower case letters. The first alphabet of every

internal word is capitalized. Ex:- int totalPay;

 Constants- These are in upper case. Underscore is used to separate the internal word.

Ex:-final double PI=3.14;

 Package – These consist of all lower-case letters. Ex:- import java.io.*;

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 16

Data Types
Java is strongly typed language. The safety and robustness of the Java language is in fact

provided by its strict type. There are two reasons for this: First, every variable and expression

must be defined using any one of the type. Second, the parameters to the method also should

have some type and also verified for type compatibility. Java language 8 primitive data types:

The primitive data types are: char, byte, short, int, long, float, double, boolean. These are again

grouped into 4 groups.

1. Integer Group: The integer group contains byte, short, int, long. These data types will

need different sizes of the memory. These are assigned positive and negative values. The

width and ranges of these values are as follow:

byte:

The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to

127.Variables of type byte are especially useful when you’re working with a stream of data

from a network or file. They are also useful when you’re working with raw binary data that may

not be directly compatible with Java’s other built-in types. Byte variables are declared by use of

the byte keyword.

For example, the following declares two byte variables called b and c:

byte b, c; // where b and c are identifiers

short:

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used

Java type. Here are some examples of short variable declarations:

short s;

short t;

int:

The most commonly used integer type is int. It is a signed 32-bit type that has a range from –

2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are commonly

employed to control loops and to index arrays. We can store byte and short values in an int.

Example

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 17

int x=12;

long:

long is a signed 64-bit type and is useful for those occasions where an int type is not large

enough to hold the desired value. The range of a long is quite large. This makes it useful when

big, whole numbers are needed.

Example

long x=123456;

2. Floating-Point Group

Floating-point numbers, also known as real numbers, are used when evaluating expressions that

require fractional precision. These are used with operations such as square root, cosine, and sine

etc. There are two types of Floating-Point numbers: float and double. The float type represents

single precision and double represents double precision. Their width and ranges are as follows:

float:

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is

faster on some processors and takes half as much space as double precision. Variables of type

float are useful when you need a fractional component, but don’t require a large degree of

precision.

Example:

float height, price;

double:

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double

precision is actually faster than single precision on some modern processors that have been

optimized for high-speed mathematical calculations. All the math functions, such as sin(), cos(),

and sqrt(), return double values.

Example:
double area,pi;

Example program to calculate the area of a circle

import java.io.*;

class Circle

{

public static void main(String args[])

 {

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 18

 double r,area,pi;

 r=12.3;

 pi=3.14;

 area=pi*r*r;

 System.out.println("The Area of the Circle is:"+area);

 }

}

3. Characters Group

In Java, the data type used to store characters is char. However, C/C++ programmers

beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is

not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully

international character set that can represent all of the characters found in all human languages.

Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars.

The standard set of characters known as ASCII still ranges from 0 to 127 as always, and the

extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255.

Here is a program that demonstrates char variables:

// Demonstrate char data type.

class CharDemo

{

public static void main(String args[])

{

char ch1, ch2;

ch1 = 88; // code for X

ch2 = 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

}

4. Booleans

Java has a primitive type, called boolean, for logical values. It can have only one of two possible

values, true or false. This is the type returned by all relational operators, as in the case of a < b.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.

class BoolTest

 {

public static void main(String args[])

{

boolean b;

b = false;

System.out.println("b is " + b);

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 19

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed.");

b = false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

Literals

A literal is a value that can be passed to a variable or constant in a program. Literals can be

numeric, boolean, character, string notation or null. A constant value can be created using a

literal representation of it. Here are some literals:

Interger literal Character literal Floating point literal byteliteral

int x=25; char ch=88; flaot f=12.34 byte b=12;

Comments

In java we have three types of comments: single line comment, Multiple line comment, and

document type comment.

Single line comment is represented with // (two forward slashes), Multiple comment lines

represented with /*………….*/ (slash and star), and the document comment is represented with

/**……….*/.

Separators

In Java, there are a few characters that are used as separators. The most commonly usedseparator

in Java is the semicolon. As you have seen, it is used to terminate statements.The separators are

shown in the following table:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 20

The Java Keywords
There are 50 keywords currently defined in the Java language (see Table bellow). These

keywords, combined with the syntax of the operators and separators, form the foundation of the

Java language. These keywords cannot be used as names for a variable, class, or method.

Operators

An operator performs an operation on one or more operands. Java provides a rich

operator environment. An operator that performs an operation on one operand is called unary

operator. An operator that performs an operation on two operands is called binary operator.

Most of its operators can be divided into the following four groups: arithmetic, bitwise,

relational, and logical. Java also defines some additional operators that handle certain special

situations. In Java under Binary operator we have Arithmetic, relational, Shift, bitwise and

assignment operators. And under Unary operators we have ++, - - , !(Boolean not), ~(bitwise

not) operators.

i. Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 21

The operands of the arithmetic operations are of numeric type. The Boolean operands are not

allowed to perform arithmetic operations. The basic arithmetic operators are: addition,

subtraction, multiplication, and division.

Example program to perform all the arithmetic operations

Arith.java

import java.io.*;

class Arith

{

 public static void main(String args[])

 {

 int a,b,c,d;

 a=5;

 b=6;

 //arithmetic addition

 c=a+b;

 System.out.println("The Sum is :"+c);

 //aritmetic subtraction

 d=a-b;

 System.out.println("The Subtractio is :"+d);

 //arithmetic division

 c=a/b;

 System.out.println("The Dision is :"+c);

 //arithmetic multiplication

 d=a*b;

 System.out.println("The multiplication is :"+d);

 }

}

The Modulus Operator

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 22

The modulus operator, %, returns the remainder of a division operation. It can be applied to

floating-point types as well as integer types. The following demonstrates the %

Modulus.java
// Demonstrate the % operator.

class Modulus

{

public static void main(String args[])

{

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + y % 10);

}

}

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation withan

assignment. As you probably know, statements like the following are quite common in

programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same

action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. The increment operator

increases its operand by one. The decrement operator decreases its operand by one. For example,

this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 23

Similarly, this statement:

x = x - 1;

is equivalent to

x--;

Note: If we write increment/decrement operator after the operand such expression is called post

increment decrement expression, if written before operand such expression is called pre

increment/decrement expression

The following program demonstrates the increment and decrement operator.

IncDec.java

// Demonstrate ++ and --

class IncDec

{

public static void main(String args[])

 {

int a = 1;

int b = 2;

int c;

int d;

c = ++b; //pre increment

d = a--; //post decrement

c++; //post increment

d--; //post decrement

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

 }

}

ii. The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short,

char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 24

These operators are again classified into two categories: Logical operators, and Shift

operators.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each

operation. The bitwise operators are applied to each individual bit within each operand.

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its

operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all

other cases. Here is an example:

00101010 42

& 00001111 15

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 25

00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then

the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.

Otherwise, the result is zero. The following example shows the effect of the ^.

00101010 (42)

 ^ 00001111 (15)

00100101 (37)

 Using the Bitwise Logical Operators

The following program demonstrates the bitwise logical operators:
BitLogic.java

// Demonstrate the bitwise logical operators.

class BitLogic

{

public static void main(String args[])

{

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b) | (a & ~b);

int g = ~a & 0x0f;

System.out.println(" a|b = " +c);

System.out.println(" a&b = " +d);

System.out.println(" a^b = " +e);

System.out.println("~a&b|a&~b = " +f);

System.out.println(" ~a = " + g);

}

}

Bitwise Shift Operators: (left shift and right shift)

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 26

It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<moves

all of the bits in the specified value to the left by the number of bit positions specified by num.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number

oftimes. Its general form is shown here:

value >> num

Here, num specifies the number of positions to left-shift the value in value. That is, the >>moves

all of the bits in the specified value to the right by the number of bit positions specified by num.

ShiftBits.java

class ShiftBits

{

 public static void main(String args[])

 {

 byte b=6;

 int c,d;

 //left shift

 c=b<<2;

 //right shift

 d=b>>3;

 System.out.println("The left shift result is :"+c);

 System.out.println("The right shift result is :"+d);

 }

}

iii. Relational Operators

The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are shown here:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 27

The outcome of these operations is a boolean value. The relational operators are most

frequently used in the expressions that control the if statement and the various loop statements.

iv. Short-Circuit Logical Operators (|| and &&)

Java provides two interesting Boolean operators not found in many other computer

languages. These are secondary versions of the Boolean AND and OR operators, and are known

as short-circuit logical operators.

When we use || operator if left hand side expression is true, then the result will be true, no

matter what is the result of right hand side expression. In the case of && if the left hand side

expression results true, then only the right hand side expression is evaluated.

Example 1: (expr1 || expr2) Example2: (expr1 && expr2)

The Assignment Operator

The assignment operator is the single equal sign, =. The assignment operator works in Java

much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression. The assignment operator

does have one interesting attribute that you may not be familiar with: it allows you to create a

chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-

else statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can be

used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is

true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?

operation is that of the expression evaluated. Both expression2 and expression3 are required to

return the same type, which can’t be void. Here is an example of the way that the ? is employed:

Test.java

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 28

class Test

{

public static void main(String args[])

{

int x=4,y=6;

int res= (x>y)?x:y;

 System.out.println("The result is :"+res);

}

}

Expressions

An expression is a combination of operators and/or operands. Expressions are used to

create Objects, Arrays, and Assigning values to variables and so on. The expression may contain

identifiers, literals, separators, and operators.

Example:-

int m=2,n=3,o=4;

int y=m*n*o;

Operator Precedence Rules and Associativity

The precedence rules are used to determine the priority in the case there are two operators

with different precedence. The Associativity rules are used to determine the order of evaluation,

in case two operators are having the same precedence. Associativity is two types: Left to Right

and Right to Left.

Table shows the order of precedence for Java operators, from highest to lowest. Notice

that the first row shows items that you may not normally think of as operators: parentheses,

square brackets, and the dot operator. Technically, these are called separators, but they act

like operators in an expression. Parentheses are used to alter the precedence of an operation. As

you know from the previous chapter, the square brackets provide array indexing. The dot

operator is used to dereference objects.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 29

Note: The operators =,?:, ++, and – are having Right to Left Associativity. The remaining

Operators are having Left to Right Associativity.

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often necessary

to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression

can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you will

need to parenthesize the expression like this:

(a >> b) + 3

Type Conversion and casting

There are two types of conversion. They are Implicit Conversion, and Explicit Conversion.

Implicit Conversion

In the case of the implicit conversion type conversion is automatically performed by java when

the types are compatible. For example, the int can be assigned to long. The byte cane assigned to

short. However, all the types are compatible, thus all the type conversions are implicitly

allowed.For example, double is not compatible with byte.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 30

Conditions for automatic conversion

1. The two types must be compatible

2. The destination type must be larger than the source type

When automatic type conversion takes place the widening conversion takes place. For example,

int a; //needs 32 bits

byte b=45; //needs the 8 bits

a=b; // here 8 bits data is placed in 32 bit storage. Thus widening takes place.

Explicit Conversion

Fortunately, it is still possible obtain the conversion between the incompatible types. This is

called explicit type conversion. Java provides a special keyword "cast" to facilitate explicit

conversion. For example, sometimes we want to assign int to byte, this will not be performed

automatically, because byte is smaller than int. This kind of conversion is sometimes called

"narrowing conversion". Since, you are explicitly making the value narrow. The general form of

the cast will be as follow:

destination_variable=(target type) value;

Here the target type specifies the destination type to which the value has to be converted.

Example

int a=1234;

byte b=(byte) a;

The above code converts the int to byte. If the integer value is larger than the byte, then it will be

reduced to modulo byte's range.

casttest.java

import java.io.*;

class casttest

{

 public static void main(String args[])

 {

 int a=258;

 byte b;

 b=(byte) a;

 System.out.print(" The result is :" +b);

 }

}

output:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 31

A different type of conversion will occur when a floating-point value is assigned to an

integer type: truncation. As you know, integers do not have fractional components. Thus, when

a floating-point value is assigned to an integer type, the fractional component is lost. For

example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.The 0.23

will have been truncated.

Automatic Type Promotion in Expressions

The expression contains the three things: operator, operand and literals (constant). In an

expression, sometimes the sub expression value exceeds the either operand.

For example, examine the following expression:

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte operands.

To handle this kind of problem, Java automatically promotes each byte, short,or char operand

to int when evaluating an expression. This means that the sub expression a * bis performed

using integers—not bytes. Thus, 2,000, the result of the intermediate expression,50 * 40, is legal

even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time errors. For

example, this seemingly correct code causes a problem:

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte

variable.However, because the operands were automatically promoted to int when the expression

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 32

was evaluated, the result has also been promoted to int. Thus, the result of the expression is now

of type int, which cannot be assigned to a byte without the use of a cast.

In cases where you understand the consequences of overflow, you should use an explicit

cast, such as

byte b = 50;

b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows:

 First,all byte, short, and char values are promoted to int, as just described.

 Then, if one operandis a long, the whole expression is promoted to long.

 If one operand is a float, the entireexpression is promoted to float.

 If any of the operands is double, the result is double.

Flow of Control (Control Statements)

The control statements are used to control the flow of execution and branch based on the status

of a program. The control statements in Java are categorized into 3 categories:

i. Conditional Statement (Selection Statements/Decision Making Statements)

ii. Loops (Iteration Statements)
iii. Branching Statements (Jump Statements)

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 33

I. Conditional Statement (Selection Statements/Decision Making Statements):

These include if and switch. These statements allow the program to choose different

paths of execution based on the outcome of the conditional expression.

if statement: This is the Java's conditional branch statement. This is used to route the execution

through two different paths. The general form of if statement will be as follow:

if (conditional expression)

{

 statement1

}

else

{

 statement2

}

Here the statements inside the block can be single statement or multiple statements. The

conditional expression is any expression that returns the Boolean value. The else clause is

optional. The if works as follows: if the conditional expression is true, then statement1 will be

executed. Otherwise statement2 will be executed.

Example:

Write a java program to find whether the given number is even or odd?

EvenOdd.java

import java.io.*;
classs EvenOdd
{
 public static void main(String args[])
 {
 int n;
 System.out.println("Enter the value of n");
 DataInputStream dis=new DataInputStream(System.in);
 n=Integer.parseInt(dis.readLine());
 if(n%2==0)

{
 System.out.println(n+" is the Even Number");
}
else
{
 System.out.println(n+"is the ODD Number");
}

 }
}

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 34

Nested if: The nested if statement is an if statement, that contains another if and else inside it.

The nested if are very common in programming. When we nest ifs, the else always associated

with the nearest if.

The general form of the nested if will be as follow:

if(conditional expresion1)
{
 if(conditional expression2)
 {
 statements1;
 }
 else
 {
 satement2;
 }
}
else
{
 statement3;
}
Example program:

 Write a java Program to test whether a given number is positive or negative.

Positive.java

import java.io.*;

class Positive

{

public static void main(String args[]) throws IOException

{

 int n;

 DataInputStream dis=new DataInputStream(System.in);

 n=Integer.parseInt(dis.readLine());

 if(n>-1)

 {

 if(n>0)

 System.out.println(n+ " is positive no");

 }

 else

 System.out.println(n+ " is Negative no");

}

}

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the

if-else-if ladder. It looks like this:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 35

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

The if statements are executed from the top down. As soon as one of the conditions controlling

the if is true, the statement associated with that if is executed, and the rest of the ladder is

bypassed. If none of the conditions is true, then the final else statement will be executed.

Example Program:

Write a Java Program to test whether a given character is Vowel or Consonant?

Vowel.java

import java.io.*;

class Vowel

{

public static void main(String args[]) throws IOException

{

 char ch;
 ch=(char)System.in.read();
 if(ch=='a')
 System.out.println("Vowel");
 else if(ch=='e')
 System.out.println("Vowel");

 else if(ch=='i')
 System.out.println("Vowel");
 else if(ch=='o')
 System.out.println("Vowel");
 else if(ch=='u')
 System.out.println("Vowel");
 else

 System.out.println("consonant");

}

}

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 36

The Switch statement

The switch statement is Java’s multi-way branch statement. It provides an easy way to dispatch

execution to different parts of your code based on the value of an expression. As such, it often

provides a better alternative than a large series of if-else-if statements. Here is the general form

of a switch statement:

switch (expression)

{

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:
// statement sequence
break;

default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in thecase

statements must be of a type compatible with the expression. Eachcase value must be a unique

literal (that is, it must be a constant, not a variable). Duplicate casevalues are not allowed.

The switch statement works like this: The value of the expression is compared with eachof the

literal values in the case statements. If a match is found, the code sequence followingthat case

statement is executed. If none of the constants matches the value of the expression,then the

default statement is executed. However, the default statement is optional. If no casematches and

no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. Whena break

statement is encountered, execution branches to the first line of code that follows theentire

switch statement. This has the effect of “jumping out” of the switch.

Write a Java Program to test whether a given character is Vowel or Consonant?(Using

Switch)

SwitchTest.java

import java.io.*;

class SwitchTest

{

public static void main(String args[]) throws IOException

{

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 37

 char ch;

 ch=(char)System.in.read();

 switch(ch)

 {

 //test for small letters

 case 'a': System.out.println("vowel");

 break;

 case 'e': System.out.println("vowel");

 break;

 case 'i': System.out.println("vowel");

 break;

 case 'o': System.out.println("vowel");

 break;

 case 'u': System.out.println("vowel");

 break;

 //test for capital letters

 case 'A': System.out.println("vowel");

 break;

 default: System.out.println("Consonant");

 }

}

}

The break statement is optional. If you omit the break, execution will continue on into thenext

case. It is sometimes desirable to have multiple cases without break statements betweenthem.

For example, consider the following program.

class Switch

 {

public static void main(String args[])

{

int month = 4;

String season;

switch (month)

{

case 12:

case 1:

case 2:season = "Winter";

break;

case 3:

case 4:

case 5:season = "Spring";

break;

case 6:

case 7:

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 38

case 8:season = "Summer";

break;

case 9:

case 10:

case 11:season = "Autumn";

break;

default:season = "Bogus Month";

}

System.out.println("April is in the " + season + ".");

}

}

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called anested

switch. Since a switch statement defines its own block, no conflicts arise between thecase

constants in the inner switch and those in the outer switch. For example, the followingfragment

is perfectly valid:

switch(expression) //outer switch

{

 case 1: switch(expression) // inner switch

 {

 case 4: //statement sequence

 break;

 case 5://statement sequence

 break;

 } //end of inner switch

 break;

 case 2: //statement sequence

 break;

 default: //statement sequence

} //end of outer switch

There are three important features of the switch statement to note:

o The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression. That is, the switch looks only for a match

between the value of the expression and one of its case constants.

o No two case constants in the same switch can have identical values. Of course, a

switch statement and an enclosing outer switch can have case constants in common.

o Aswitch statement is usually more efficient than a set of nested ifs.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 39

II. Loops (Iteration Statements)

Java’s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. As you probably know, a loop repeatedly executes the same set of

instructions until a termination condition is met.

i. while

The 'while' loops is used to repeatedly execute a block of statements based on a condition. The

condition is evaluated before the iteration starts. A 'for' loop is useful, when we know the

number of iterations to be executed in advance. If we want to execute the loop for indefinite

number of times, a while loop may be better choice. For example, if you execute a query to fetch

data from database, you will not know the exact number of records returned by the query.

Syntax:

while(condition)

{

// body of loop

increment or decrement statement

}

The condition can be any Boolean expression. The body of the loop will be executed as long as

the conditional expression is true. When condition becomes false, control passes to the next line

of code immediately following the loop. The curly braces are unnecessary if only a single

statement is being repeated.

Example program:

Write a java program to add all the number from 1 to 10.

WhileTest.java

import java.io.*;

class WhileTest

{

 public static void main(String args[])

 {

 int i=1,sum=0;

 while(i<=10)

 {

 sum=sum+i;

 i++;

 }

 System.out.println("The sum is :"+sum);

 }

}

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 40

ii. do-while statement

However, sometimes it is desirable to execute the body of a loop at least once, even if the

conditional expression is false to begin with. In other words, there are times when you would like

to test the termination expression at the end of the loop rather than at the beginning.

Fortunately, Java supplies a loop that does just that: the do-while. The do-while loop always

executes its body at least once, because its conditional expression is at the bottom of the loop. Its

general form is:

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the

conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop

terminates. As with all of Java’s loops, condition must be a Boolean expression.

Example program:

Write a java program to add all the number from 1 to 10. (using do-while)

WhileTest.java

import java.io.*;

class WhileTest

{

 public static void main(String args[])

 {

 int i=1,sum=0;

do

 {

 sum=sum+i;

 i++;

 }while(i<=10);

 System.out.println("The sum is :"+sum);

 }

}

Note 1:Here the final value of the i will be 11. Because the body is executed first, then the

condition is verified at the end.

Note 2: The do-while loop is especially useful when you process a menu selection, because you

will usually want the body of a menu loop to execute at least once.

Example program: Write a Java Program to perform various operations like addition,

subtraction, and multiplication based on the number entered by the user. And Also Display

the Menu.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 41

DoWhile.java

import java.io.*;

class DoWhile

{

 public static void main(String args[]) throws IOException

 {

 int n,sum=0,i=0;

 DataInputStream dis=new DataInputStream(System.in);

 do

 {

 System.out.println("Enter your choice");

 System.out.println("1 Addition");

 System.out.println("2 Subtraction");

 System.out.println("3 Multiplicaton");

 n=Integer.parseInt(dis.readLine());

 System.out.println("Enter two Numbers");

 int a=Integer.parseInt(dis.readLine());

 int b =Integer.parseInt(dis.readLine());

 int c;

 switch(n)

 {

 case 1: c=a+b;

 System.out.println("The addition is :"+c);

 break;

 case 2: c=a-b;

 System.out.println("The addition is :"+c);

 break;

 case 3: c=a*b;

 System.out.println("The addition is :"+c);

 break;

 default:System.out.println("Enter Correct Number");

 }

 } while(n<=3);

 }

}

iii. for statement

The for loop groups the following three common parts into one statement: Initialization,

condition and Increment/ Decrement.

Syntax:

for(initialization; condition; iteration)

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 42

{

 // body of the loop

}

The for loop operates as follows.

 When the loop first starts, the initialization portion of the loop is executed. Generally,

this is an expression that sets the value of the loop control variable, which acts as a

counter that controls the loop. It is important to understand that the initialization

expression is only executed once.

 Next, condition is evaluated. This must be a Boolean expression. It usually tests the loop

control variable against a target value. If this expression is true, then the body of the loop

is executed. If it is false, the loop terminates.

 Third, Increment/Decrement is used to increment /decrement the loop control variable

value by one.

Example program: same program using the for loop

ForTest.java

import java.io.*;

class ForTest

{

 public static void main(String args[])

 {

 int i,sum=0;

 for(i=1;i<=10;i++)

 {

 sum=sum+i;

 }

 System.out.println("The sum is :"+sum);

 }

}

There are some important things about the for loop

1. The initialization of the loop controlling variables can be done inside for loop.

Example:

for(int i=1;i<=10;i++)

2. We can write any Boolean expression in the place of the condition for second part of the

loop.

Example: where b is a Boolean data type

boolean b=false;

for(int i=1; !b;i++)

{

//body of the loop

b=true;

}

This loop executes until the b is set to the true;

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 43

3. We can also run the loop infinitely, just by leaving all the three parts empty.

Example:

for(; ;)

{

 //body of the loop

}

For each version of the for loop:

A for loop also provides another version, which is called Enhanced Version of the for loop. The

general form of the for loop will be as follow:

for(type itr_var:collection)

{

//body of the loop

}

Here, type is the type of the iterative variable of that receives the elements from collection, one

at a time, from beginning to the end. The collection is created sung the array.

Example program:

Write a java program to add all the elements in an array?

ForEach.java

import java.io.*;

class ForEach

{

 public static void main(String args[])

 {

 int i, a[], sum=0;

 a=new int[10];

 a={12,13,14,15,16};

 for(int x:a)

 {

 sum=sum+x;

 }

 System.out.println("The sum is :"+sum);

 }

}

III. Branching Statements (The Jump Statements)

Java supports three jump statements: break, continue, and return. These statements transfer

control to another part of your program.

i. break statement

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 44

In Java, the break statement has three uses. First, as you have seen, it terminates a statement

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as

“civilized” form of goto statement.

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the conditional

expression and any remaining code in the body of the loop. When a break statement is

encountered inside a loop, the loop is terminated and program control resumes at the next

statement following the loop. Here is a simple example:

// Using break to exit a loop.

class BreakLoop

{

public static void main(String args[])

{

for(int i=0; i<100; i++)

{

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

Using break as a Form of Goto

In addition to its uses with the switch statement and loops, the break statement can also be

employed by itself to provide a “civilized” form of the goto statement. For example, the goto can

be useful when you are exiting from a deeply nested set of loops. To handle such situations, Java

defines an expanded form of the break statement. By using this form of break, you can, for

example, break out of one or more blocks of code.

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a

stand-alone block of code but it can also be a block that is the target of another statement. When

this form of break executes, control is transferred out of the named block. The labeled block

must enclose the break statement, but it does not need to be the immediately enclosing bloc.

To name a block, put a label at the start of it. A label is any valid Java identifier

followedby a colon. Once you have labeled a block, you can then use this label as the target of

abreak statement.

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 45

Example code:

class Break

{

public static void main(String args[])

{

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

Running this program generates the following output:

Before the break.

This is after second block.

ii. continue statement

It is used to stop the current iteration and go back to continue with next iteration. Sometimes it is

useful to force an early iteration of a loop. That is, you might want to continue running the loop

but stop processing the remainder of the code in its body for this particular iteration. In while and

do-while loops, a continue statement causes control to be transferred directly to the conditional

expression that controls the loop. In a for loop, control goes first to the iteration portion of the

for statement and then to the conditional expression. For all three loops, any intermediate code is

bypassed. Here is an example program that uses continue to cause two numbers to be printed on

each line:

// Demonstrate continue.

class Continue

{

public static void main(String args[])

{

for(int i=1; i<=10; i++)

{

Unit 1: Introduction to OOP

SACET, CSE Department, II CSE II SEM (R16) Page 46

if (i%5 == 0) continue;

System.out.print(i + " ,");}

}

}

Here all the numbers from 1 to 10 except 5 are printed. as 1,2,3,4,6,7,8,9,10.

iii. return statement

The last control statement is return. The return statement is used to explicitly return from

a method. That is, it causes program control to transfer back to the caller of the method.

As such, it is categorized as a jump statement.

Example code

class Test

{

 p s v main(String args[]) // caller of the method

 {

 int a=3,b=4;

 int x=method(a,b);//function call

 System.out.println("The sum is :"+x);

 }

 int method(int x,int y) // called method

 {

 return (x+y);

 }

}

After computing the result the control is transferred to the caller method, that main in this case.

------------------------End of 1
st
 Unit----------------

